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Constructive function theory seeks out the connections between the
structural properties of a function and its degree of approximation. It
began early in this century with the work of Jackson and Bernstein on
polynomial approximation. They were interested in the error of
approximation to a function IE C(T) by the class :Y;, of trigonometric
polynomials of degree ~ n,

E~(f):= inf IIf- Til C(lr)'
TE~

(1)

Weierstrass' theorem tells us that E~(f) decreases to zero as n tends to
infinity. Jackson and Bernstein wanted to put this in a quantitative form
which involves the smoothness off, in particular its modulus of continuity:

dh(f, x) :=fx( +h)-f(x). (2)

In 1911, as part of his doctoral dissertation under Landau in G6ttingen,
Jackson [12J proved the now famous inequality:

E~(f) ~ ew(, n- 1
), n= 1,.... (3)

These were not the first estimates for E: but they were the cleanest. Only a
year earlier, Lebesgue had given estimates for approximation by the nth
Fourier sums; but the latter contain logarithms which are absent in (3).

As natural as (3) seems, there is still the question whether it is in some
sense best possible. Bernstein [2J showed that this is the case, in at least
two different ways. He gave examples of functions I e.g., J(t) = Icos tl, for
which (3) can be reversed. In another vein, he showed that for 0 < 0:: < 1,
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E~(f) = O(n-~) if and only if w(f, t) = O(t lX
). Of course, the latter con

dition describes the famous Lipschitz classes, Lip a.
Conspicuously absent in the above characterization is the case IY. = 1. It

turns out that functions approximated with order O(n -1) need not be in
Lip 1. The mystery in this case was not settled until 1941 when
Zygmund [16] showed the need for using higher order differences
(defined inductively) and their corresponding moduli of smoothness

wdf, t):= sup IILI%(f)llCCfl'
O<hS;;t

k= 1, 2, ....

Zygmund proved that E~(f)=O(n-1) if and only if w2 (f, t)=O(t). This
space of functions is often referred to as the Zygmund class.

Finally, early in the 1950's the whole matter of trigonometric
approximation was settled by Stechkin [14]. Following Achiezer [1] (the
case k = 2), he proved for k = 1, 2, ...,

E~(f):,,;Ckwk(f,n-1), n= 1, 2,... , (4)

and also gave converse estimates which had the effect of characterizing for
all a> 0, the functions which are approximated with order O(n -IX); they
satisfy wk (f, t) = O( t lX

), k := [a] + 1. The latter function classes are known
as generalized Lipschitz spaces (Lip*a). They have many important
applications in analysis.

While these investigations into trigonometric approximation had a nice
clean ending, the situation regarding algebraic polynomial approximation
in C(I), 1:= [ -1, I J, was much different. The analogues of (4) are quite
easy to prove by using what is now a standard substitution, x = cos 8, to
transform the approximation of f to a matter of approximating
g(8) := f(cos 8) by trigonometric polynomials, which is of course solved in
(4). However, such results do not characterize the Lipschitz classes. The
reason for this, as was pointed out by Nikolski, is that algebraic
polynomials can approximate better near the end points of the interval 1.
Timan [15J made this more precise by proving that there are algebraic
polynomials Pn of degree ~ n such that for - 1 ~ x ~ 1,

!1=? 1
If(x) - Pn(x)1 ~ Cw(f, LIn (x)), An(x) := Y 1 -.A +2'

n n

This added precision near the endpoints in (5) is enough to admit a con
verse result. In this way, we characterize Lip IY., 0 < a < 1, as the set of those
functions f which satisfy (5) with the right hand side replaced· by
C(Lln(xW·

But what about the case a ~ 1? Zygmund's theorem suggests the need for
higher order moduli of smoothness. Still, it was some eight years after
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Timan's result that Freud [8] and Dzadyk [6] working independently
proved

-1:( x:( 1, (6)

for suitable Pn of degree nand n = 1, 2,.... The main difficulty to be circum
vented in proving (6) is that the usual substitution x = cos 8 leads to a
function g whose second differences are not easily estimated by those of f

Freud's proof of (6) is noteworthy in many respects. It is based on a two
stage approximation. First, he approximates f by a continuous piecewise
linear function S which interpolates f at a set of points Xb k = 1, ...,n, which
is thicker near the endpoints, thereby allowingf- S to be estimated by the
right side of (6). Now S can be written as a linear combination of the
functions (x - xd +. In this way, (6) is reduced to approximating these
truncated powers. This is done by transforming to the trigonometric case
and using standard methods of trigonometric approximation.

Brudnyi [4] had used a similar approach to Freud's in proving that (6)
holds with Wk in place of Wz. These estimates can then be used to show
that for any IX> 0, the class of functions Lip*1X consists of those f such that
(6) holds with the right side replaced by C(L1 n (x))". These results com
pleted an important chapter in the approximation of functions.

The technique of intermediate approximation by smooth functions was
used often and with much success by Freud. For example, it plays a crucial
role in Freud's quantitative estimates [9, 10] for approximation by a
sequence (Ln ) of positive linear operators on C(I). Bohman and Korovkin
had shown that the convergence of Lnf to f for the three test functions
f(x) = 1, x, XZ guarantees the convergence of LJ to f for all f E C(I). Freud
generalized this result and put it into a quantitative form.

Freud showed that the test functions 1, x, X
Z can be replaced by any set

<Po, <PI' <Pz which forms an extended Chebyshev system, that is, the <Pi
are twice continuously differentiable and each "polynomial"
<P = co<Po + CI <PI + cz<Pz (where not all Ck are 0) has at most two zeros in I
counting multiplicity. Freud proved that if II<pi - Ln<pill = O(A~), i = 0, 1,2,
then for each fE C(I),

n= 1, 2,.... (7)

To prove (7), Freud first shows that for each twice continuously differen
tiable function g,

(8)

When, the test functions are the power functions 1, x, xZ, (8) follows from
the expansion g(t) = g(x) +g'(x)(t - x) + R(t, x) with jR(t, x)j :(
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111 g"ll (t - x f Indeed, since II gill ~ C( II gil + II gill!), applying L n to this for
mula (at x) and using the positivity of L n gives (8). The general case is a
modification of these ideas using the properties of extended Chebyshev
systems.

To deduce (7) from (8), Freud proves that for each 6> 0, there is a twice
differentiable gJ such that

(9)

Now, (7) follows by taking 6=An and using (8) to estimate IlgJ-LngJil
and using the uniform boundedness of the L n and (9) to estimate
11(j- gJ) - Ln(j- gJ)II·

Nowadays, the above technique is encompassed in the Peetre K
functional (see [5] for a discussion of the K functional in approximation).
In particular, (9) is the substantial half of the proof that the K functional
for interpolation between C and C(2) is equivalent to CO 2 , For the real line
or the circle, this is rather easy to prove using Steklov averages, as was
shown some years earlier by Peetre [13]. On the other hand, the case of
the finite interval I has certain technical difficulties since the Stecklov
averages are not usable at the end points of 1. Freud overcomes this by
extending f to a larger interval in such a way that the modulus of con
tinuity is not substantially increased.

There is another beautiful theorem of Freud which can likewise be
reduced to the approximation of elementary functions. This one deals with
one-sided approximation, namely the approximation of f by polynomials
Pn of degree ~ n which lie below f Pn ~f The approximation is done in
the metric of LdI, dfl) with dfl(X) := dx/Jl- x 2

. We denote by E;; the
error in this type of approximation. Freud came to this problem from his
study of Tauberian theorems with remainder which will be reported on by
Ganelius.

If vr denotes the set offunctionsfwithf(r-l) absolutely continuous and
Van(j(r) = 1, then Freud [6J proved

n= 1, 2,....

whenever fE vr
. To approximate functions in Vr

, it is enough to
approximate the extreme points of vr which are the truncated powers
(1/r!)(x - a)':.- , a E I. From Freud's experience with orthogonal
polynomials, the latter was an easy problem. The first step is to construct
the Hermite interpolant Qa to the Heaveside function Ha(x) := (x - a)~ at
the points Xll ... , Xb Xk+""" Xn , where the xj are the zeros of the Chebyshev
polynomial Cn of degree n, and k is chosen so that xk<a~xk+l' That is,
Qa interpolates H a and Q~ interpolates H~ at these points. Rolle's theorem
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shows that O::(Qa::(1 on I. Hence the polynomial Pa(x):=(x-aYQAx)
lies below (x - a),+. It follows that

Et,,((- -a)':t-)::(f [(x-a)':t- -Pa(x)] dj1(x)::(Cn- r- 1. (11)

The proof of the latter inequality uses Gauss's quadrature formula to
integrate Pa exactly. The ideas are very reminiscent of the classical proofs
of the Chebyshev-Markov-Stieljes separation theorem.

The above theorems of Freud dealt with polynomial approximation.
Freud of course looked at other aspects of approximation, some of which
will surely be reported on by others. I would, however, like to say
something about his work [11] with Popov on spline approximation. In
the late sixties, splines were a hot topic, spurred on largely by the elegant
work of Schoenberg. The constructive theory of splines was just beginning
to take shape. Especially interesting was spline approximation with free
knots since this type of approximation showed some remarkable gains in
the order of approximation when compared with polynomial
approximation or approximation by splines with equally spaced knots.

Freud and Popov proved that when f is a continuous function in yr,
then there is spline function Sn E c(r-1)(I) which consists of n polynomial
pieces, each of degree ::( r, such that

Ilf-SnllC(I)::(Crn-r-1. (12)

For approximation by polynomials of degree ::( n such an order of
approximation requires that f(r) be in the Zygmund class in [ - a, a], for
all a < 1, thus in particular in every Lip (J(, (J( < 1. We see that there is a con
siderable gain in the approximation order for free knot splines. When r = 0,
this gain can be realized by choosing knots -1 = Xo < Xl < '" < X n = 1 so
that the variation of f is balanced on the intervals
Ii := (Xi - i , xi): VarlJ= lin, j= 1,..., n. The function Sn which takes on the
constant value f(xi ) on Ii satisfies (12).

When r> 0, we must work a little harder. We now choose knots so that
VarIJ(r)::( 21n and IIil ::( 41n, j = 1,..., n. This can be realized by refining a
"balanced" knot set. If rPr is the function which has the constant value
f(r)(xi ) on Ii' then

Ilf(r) = rPrllC(I)::( 21n. (13)

We would like to integrate (13) to get successive approximations rPi to f(j),
j = r - 1,..., 0. However, simple integration will not work since the error will
build up. Freud and Popov avoid this by making a small correction at each
stage. Namely, they construct a spline ljJj with knots also at the Xv so that

rPi-1 :=fU -
1)(-I)+f

x

(rPi+ljJi)
-1
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will interpolate jU-I) every so often, for example, at every rth knot XV"

This correction is made up from locally supported splines; B-splines would
do quite wen.

The Freud-Popov technique is useful for other types of spline
approximation. For example, the knots can be fixed or monotone functions
can be approximated by monontone splines. Sometime after their work, de
Boor [3] developed the powerful quasi-interpolant projectors, which can
usually avoid some of the technical aspects of the Freud-Popov approach.
However, in problems where the approximation of j is to be approached
through the approximation of its derivatives, the Freud-Popov technique
still has much to offer.
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